

What readers are saying about In 30 Minutes® guides:

Google Drive & Docs In 30 Minutes

“I bought your Google Docs guide myself (my new company uses it) and it was really handy. I
loved it.”

“I have been impressed by the writing style and how easy it was to get very familiar and start
leveraging Google Docs. I can’t wait for more titles. Nice job!”

Twitter In 30 Minutes

“A perfect introduction to Twitter. Quick and easy read with lots of photos. I finally understand
the # symbol!”

“Clarified any issues and concerns I had and listed some excellent precautions.”

Excel Basics In 30 Minutes

“Fast and easy, this book is everything it claims to be. The material presented is very basic
but it is also incredibly accessible with step-by-step screenshots and a friendly tone more like a
friend or co-worker explaining how to use Excel than a technical manual.”

“An excellent little guide. For those who already know their way around Excel, it’ll be a good
refresher course. For those who don’t, it’s a clear, easy-to-follow handbook of time-saving and
stress-avoiding skills in Excel. Definitely plan on passing it around the office.”

Dropbox In 30 Minutes

“I was intimidated by the whole idea of storing my files in the cloud, but this book took me
through the process and made it so easy.”

“This was truly a 30-minute tutorial and I have mastered the basics without bugging my 20-
year-old son! Yahoo!”

“Very engaging and witty.”

LinkedIn In 30 Minutes
“This book does everything it claims. It gives you a great introduction to LinkedIn and gives

you tips on how to make a good profile.”

“I already had a LinkedIn account, which I use on a regular basis, but still found the book very
helpful. The author gave examples and explained why it is important to detail and promote your
account. Reading this book has motivated me to return to my account and update it to make
it more thorough and attention-grabbing.”

Learn more about In 30 Minutes® guides at in30minutes.com

jQuery Plugin Development
in 30 Minutes

How to build jQuery plugins that are easy to
maintain, update and collaborate on

By Robert Duchnik

ISBN: 9781893992485989

Copyright © 201482016

i30 Media Corporaon

An In 30 Minutes® Book

In30minutes.com

All Rights Reserved

No part of this publicaon may be reproduced, distributed, or transmiPed in any form or by any means,
including photocopying, recording, or other electronic or mechanical methods, without the prior wriPen
permission of the publisher, except in the case of brief quotaons embodied in crical reviews and
certain other noncommercial uses permiPed by copyright law. IN 30 MINUTES is a trademark of i30
Media Corporaon. Visit in30minutes.com for more informaon.

The author and the publisher make no representaons with respect to the contents hereof and
specifically disclaim any implied or express warranes of merchantability or fitness for any parcular
usage, applicaon, or purpose. The author and the publisher cannot be held liable for any direct,
indirect, incidental, consequenal, or special damages of any kind, or any damages whatsoever,
including, without limitaon, those resulng in loss of profit, loss of contracts, goodwill, data, income,
informaon, ancipated savings or business relaonships, arising out of or in connecon with the use of
this book or any links within.

i30 Media Corporaon and IN 30 MINUTES guides are not associated with other brand names, product
names, or trademarks cited in this book.

Image credits

Cover design by Monica Thomas for TLC Graphics, www.TLCGraphics.com

All other photographs, images, tables, and diagrams were created by the author or publisher.

Contents

IntroducAon: 1
About his Guide: 1
Why juery Plugins 1

SecAon 01 – CreaAon: 4
Naming: 4
Closures: 4
Plugin Func?on: 5
ummary: 5

SecAon 02 – Prototyping: 6
he Main Loop: 6
he get() Method: 6
Plugin Class: 7
Prototyping: 8
ummary: 9

SecAon 03 – ConvenAons: 10
Generate: 10
Destroy: 10
Init: 10
$var: 11
Private Func?ons: 11
his & hat: 12
$.proxy(): 12
ummary: 13

SecAon 04 – Events: 14
Note on .hover(): 14
e.currentarget vs e.target: 14
Disabling Event Bubbling: 15
Naming Events: 15
Naming Func?ons: 16
ummary: 16

SecAon 05 – pAons: 18

Default Op?ons: 18
Plugin Op?ons: 18
Addi?onal Op?ons: 19
Data Op?ons: 19
Advanced Op?ons eQer: 19
ummary: 20

SecAon 06 – SeOers and GeOers: 23
eQers: 23
GeQers: 23
Methods: 23
he Rou?ne: 23
AutoSCrea?on: 25
ummary: 25

SecAon 07 – CSS and Themes: 26
Naming: 26
C: 26
eTng hemes: 27
Mul?ple hemes: 27
ummary: 28

SecAon 08: Effects: 29
tates: 29
Controller: 29
ummary: 29

SecAon 09 – Callbacks: 30
etup: 30
Ajax: 30
Naming: 32
ummary: 32

SecAon 10 – Browser and Mobile Support: 33
Browser upport: 33
Extending $.support: 33
Mobile upport: 34
ummary: 35

SecAon 11 – File rganizaAon: 36
imple: 36
With Grunt: 36
Git: 37
Versioning: 37
ummary: 38

SecAon 12 – Boilerplate: 39

SecAon 13 – Conclusion: 44

Contact: 44

Bonus Content

ec?on 14 – juery Methods: 45
ec?on 15 – juery U?li?es: 47
ec?on 16 – juery electors: 48
ec?on 17 – juery Events: 49
Glossary: 51
A Request For Readers: 53
Introduc?on to LinkedIn In 30 Minutes: 54
Introduc?on o Google Drive & Docs In 30 Minutes: 58
About In 30 Minutes® Guides: 61

jQuery Plugin Development In 30 Minutes

1

Introduction
Thank you for purchasing jQuery Plugin Development In 30 Minutes. As an experienced jQuery

plugin developer and the operator of a website devoted to jQuery education, I have had many

opportunities to talk with other developers and understand what works and what doesn’t when

it comes to learning how to build plugins. This short guide is intended to quickly get you up to

speed with core concepts, which enable you to start building plugins of your own.

About This Guide

I wanted this guide to be as short and concise as possible, and provide only the information

needed to start building plugins. Why give long-winded write-ups about every concept? My

intention is to avoid the fluff and filler that make up 80% of most programming books, and just

get straight to the point.

jQuery Plugin Development In 30 Minutes is intended for people who already have some

knowledge and ability with JavaScript and jQuery. In fact, this guide is for anyone who writes

JavaScript code and uses jQuery. Ultimately, the goal of this guide is to teach how to write

clean and efficient jQuery plugins that are easy to maintain, update and work on with other

developers.

Most of the concepts in this guide will not require any advanced knowledge. However, I will

provide some explanation concerning more advanced parts, along with further reading for

those who are interested in learning more.

jQuery is by far the most widely used library for JavaScript. It is used on more than 50% of

websites. Many frameworks, such as Backbone and Twitter’s Bootstrap, are built on top of

jQuery. Being able to extend and write plugins for jQuery can not only save lots of time, but

also makes code much cleaner and easier to maintain.

I believe the power of jQuery is highly underutilized. Most developers will take advantage of its

shortcuts and CSS selectors, but most of the time they fail to take advantage of much else.

Being able to extend jQuery, whether by adding your own functions, CSS selectors or full-

blown plugins, makes you a much stronger and smarter developer.

Why jQuery Plugins?

Why should developers write plugins in the first place? I like to write as many plugins and

libraries as I can. Reusability is key in reducing bugs and coding quickly. The more I use a

jQuery Plugin Development In 30 Minutes

2

piece of code, the more confident and familiar I become with it, which in turn significantly

speeds up my development time.

When I write plugins, it may be for anything from larger-sized plugins for tooltips or select

boxes to small jQuery extensions for removing a class by using a regular expression. When I

solve a problem that might be reusable, I toss it right away into a utilities file (if it’s small

enough) or build out a standalone plugin.

In my experience, requirements change quite often, or new situations will arise that weren’t

anticipated at the start of the project. If the situation can be addressed with a plugin, I just whip

open the standalone plugin page, make the updates and pop the new plugin back in. Because

the plugin is self-contained, it’s easy to recreate the problem, fix it, and get it back into the

codebase. This is a far better approach than trying to find some random piece of code in the

main codebase, and hoping that a change there won’t affect something else.

I write plugins using a standard format. It’s easy for me to go back months or even years later

and understand exactly what is going on inside that plugin. It’s also easy for other developers

to jump right in and make modifications. They can test it in the standalone environment, and, if

it works, there is some confidence that it will also work once we insert the updated plugin into

our main codebase again.

Ultimately, I try to think of my application’s main codebase as just stringing together various

components and code from many sources. It just controls logic and flow. The real nitty-gritty is

handled behind the scenes. This is why frameworks like Backbone are so important — they

hide a lot of the details in the background and allow you to just focus on the flow and control of

your application.

It’s also possible to open source our plugins on GitHub and similar sites. This can generate bug

reports and contributions from the community while empowering other developers. In this

sense, you will often be far better off investing your time searching for a plugin that is already

available in the community and potentially updating that plugin rather than building out a

completely new one of your own. A great place to look for plugins is the official jQuery plugins

site. Sometimes, purchasing a plugin for a few dollars is the best bet. A purchased plugin will

likely come with better support and be much more stable if there is money going into its

development.

Finally, a good standalone plugin can also make you a fair amount of money. Many developers

make a decent living by simply maintaining and updating one or two crucial plugins that are far

jQuery Plugin Development In 30 Minutes

3

better than anything available for free.

In the time we have left, we’ll cover the nuts and bolts of building a jQuery plugin. Let’s get

started!

jQuery Plugin Development In 30 Minutes

4

Section 01: Creation
This section covers the most basic, bare-bone pieces required to get your plugin up and

running.

Naming

You should start by coming up with a name for your plugin. Here are a few points to keep in

mind:

• Avoid random names like blipper that wouldn’t give anyone an inkling about what

the plugin’s function might be. Fancy names are reserved for things such as

frameworks.

• The name should represent the plugin’s function in some way, while avoiding

vagueness. For example, if we are building a tooltip plugin, it’s probably better to

call it tooltip rather than tip.

• Employ unique names to avoid collisions. For instance, rather than tooltip, use a

name like wTooltip or wTip.

Closures

Make sure your code is contained within a closure. This will take care of any namespace

issues so any functions you declare will only exist for the plugin. This is particularly important

once we start prototyping our plugin class.

(function ($) {
'use strict';

// Code here...

})(jQuery);
(Online: http://jsfiddle.net/3EDQ4/)

Note that the strict declaration is not really required. It’s more useful for testing and

outputting a stricter set of errors. However, I would recommend using strict to help

decrease the number of bugs in your plugin.

jQuery Plugin Development In 30 Minutes

5

Plugin Function

We can go ahead and create our plugin function by simply extending the jQuery $.fn object.

This will make our plugin available to any jQuery elements.

(function ($) {
'use strict';

// Plugin class and prototype will go here.

$.fn.wTooltip = function () {

return this;
};

})(jQuery);
(Online: http://jsfiddle.net/8nsBa/)

We can now initialize our plugin on any element using our plugin name.

$('#elem').wTooltip().hide();

Note the importance of returning the this object. This returns all of the elements you called

the plugin method on. This is important in maintaining jQuery’s method chaining, which allows

you to make additional calls after the plugin call.

Summary

At the most basic level, we now have a plugin function that extends jQuery. We can call this

function on any selected elements allowing us to manipulate the this object containing all of

the elements. In some simple cases, this is even as far as we may need to go.

For example, say we wanted to have a method called .opacity50() that simply sets the

opacity of our elements to 50%.

(function ($) {
'use strict';

$.fn.opacity50 = function () {
return $(this).css('opacity', 0.5);

};
})(jQuery);

(Online: http://jsfiddle.net/w827q/)

jQuery Plugin Development In 30 Minutes

6

Section 02: Prototyping
In this section, we will take things a step further and begin looking at more of an advanced

layout for our plugin code.

The Main Loop

Before we get into prototyping, we’ll want to setup a main loop for our function. This will be

used to iterate through each element that the plugin method was called on.

Note this can be done many ways. Here, I’m simply presenting a tried-and-tested method in

laying out plugin code.

We’ll start by calling the .each() method on our this object containing all of our elements.

We do this because our plugins will typically be a little more complicated than just setting some

CSS properties.

$.fn.opacity50 = function () {
return this.each(function () {

// Code here...

$(this).css('opacity', 50);
});

};
(Online: http://jsfiddle.net/5tCQL/)

The get() Method

Now that we are iterating through our elements, it allows us to start performing some more

advanced operations on each element. However, keeping a function inside of our .each()

method is not very efficient, as it will instantiate a copy of that function in each iteration.

It’s good practice in JavaScript to separate this functionality so the .each() method only

points to one copy of the function. We’ll do that by creating a get() function that will house

the creation of our plugin object.

$.fn.opacity50 = function () {

function get() {
$(this).css('opacity', 50);

}

jQuery Plugin Development In 30 Minutes

7

return this.each(get);
};

(Online: http://jsfiddle.net/8Bzm2/)

Plugin Class

Next, we’ll create our plugin class, which is really just a regular function that we’ll loosely treat

as a class.

The key takeaway is that this will allow us to create objects where we can store properties for

each plugin instance. Typically, this will be something like options or anything that keeps track

of the state of each individual plugin object.

(function ($) {
'use strict';

function Tooltip(el) {
this.$el = $(el);

}

$.fn.wTooltip = function () {

function get() {
var wTooltip = $.data(this, 'wTooltip');

if (!wTooltip) {
wTooltip = new Tooltip(this);
$.data(this, 'wTooltip', wTooltip);

}

return wTooltip;
}

return this.each(get);
};

})(jQuery);
(Online: http://jsfiddle.net/7cuaq/)

You can see we have added our Tooltip function class, which is instantiated in the get()

function. This is where our closure becomes important, as it hides the Tooltip function class

from any other code and makes it available only to our $.fn.wTooltip() function.

In the get() function, the first thing we do is check to see if the object already exists on the

jQuery Plugin Development In 30 Minutes

8

element. This is in case we iterate over an element that has already been instantiated with our

plugin. In this case, we can simply return the object. Otherwise, we can go ahead and run our

plugin code.

For now, our object just stores a reference to the element, $el, which is something our plugin

will commonly reference.

Prototyping

Finally, we’ll want to set up a prototype function that will hold the majority of our code. There

are two main reasons why we want to set up a prototype function:

1. It saves lots of memory by not having to recreate all applicable methods for every

instance of the object we create.

2. Referencing an existing function is faster than creating a new one, regardless of

memory usage.

A prototype basically extends an object by providing it methods without having to instantiate a

copy in each object. This is similar to the concept of keeping functions outside of

the .each() loop. It also serves as a good way to organize code more efficiently.

(function ($) {
'use strict';

function Tooltip(el) {
this.$el = $(el);

this.generate();
}

Tooltip.prototype = {
generate: function () {

// Code here...
}

};

$.fn.wTooltip = function () {

// Code here...
};

})(jQuery);

jQuery Plugin Development In 30 Minutes

9

(Online: http://jsfiddle.net/5x59q/)

The prototype functions have absolutely no state, as this will all be kept in our object. This

object is what is stored in our element using .data() as we see in the previous example.

Note we can create as many function classes and prototypes as we like. For most plugins this

is rare, but for something more advanced and requiring more complexity, we can go ahead and

create many of them.

Summary

We now have upped the complexity of our plugin. We have added a loop using .each() to

iterate over each element. We are also keeping track of our plugin with an object that allows us

to reference the plugin code later on.

jQuery Plugin Development In 30 Minutes

10

Section 03: Conventions
We’ll take a moment here to cover some conventions used for naming functions and variables.

Generate

Earlier, we introduced a function in the prototype named _generate(). This function is used

as an area to create the actual plugin elements. So for example, with a tooltip, we might simply

create a div here.

_generate () {
this.$tooltip = $('<div></div>');

$('body').append(this.$tooltip);
}

We are creating a reference to our tooltip object here since we’ll need to show/hide it later on

when we write our .hover() code.

Note this function could be called anything, e.g., _create() or _make() or whatever

makes sense to you. The point here is it’s an area used discretely to create the visual

components of your plugin.

Finally, for our tooltip example, we’ll .append() it to the body of our page, thereby making it

visible and active.

Destroy

It’s also a good idea to provide a destroy() method that can be called to quickly send your

plugin into oblivion.

destroy: function () {
this.$tooltip.remove();
$.removeData(this.$el, 'wTooltip');

}

We’ll cover exactly how to call this method later in the guide.

Init

Although quite rare, sometimes we may want to keep track of the initialization of the plugin on

each element. Such a situation may occur if your plugin is interacting with a back-end server.

jQuery Plugin Development In 30 Minutes

11

Let’s say we have a setColor() method that updates the plugin’s color somewhere, but

then also sends a call to the server to update some property.

_generate: function () {
this.$tooltip = $('<div></div>');

this.setColor('red');

this.init = true;

$('body').append(this.$tooltip);
},

setColor: function (color) {
this.$tooltip.css('color', color);

if (this.init) {
// Update on back end.

}
}

The problem occurs when we are preloading our plugin on load. At this point, we probably

don’t want to call the server because the action was not initiated by the user.

$var

You will notice we create some variables preceded with a $ such as $el or $tooltip. This is

not so much related to plugin development, but rather good practice when working with

jQuery.

Whenever we are referring to a jQuery element, we will precede it with $ just to let us know this

is a jQuery object we can operate on.

this.$el = $(el);
this.init = false;

Private Functions

Our plugin will contain many functions both private and public. In JavaScript, there is no real

concept of private functions since they can all be accessed one way or another.

To give the idea that a function is private and should not be publicly available, we will just

precede it with an underscore character (_). You will see we have already done this with our

jQuery Plugin Development In 30 Minutes

12

_generate() function above. Otherwise, functions such as setColor() in the example

above are public, as we can call them to alter the plugin’s state at any time.

This & That

Often in our plugins, we will need to pass a reference to our plugin object this to another

function scope with a different, local this. You probably will have seen a declaration like this

before, which creates a reference to the this object under a different name, thereby making it

accessible in other function scopes.

Some more common styles are below:

var _this = this;
var $this = this;
var that = this;
var _self = this;

It really doesn’t matter which one you go with. However, I prefer to use _this although using

_self is also quite popular.

The example below will illustrate the point:

_generate: function () {
var _this = this;

function elMousemove (e) {
_this.$tooltip.css({left: e.pageX, top: e.pageY});

}

this.$tooltip = $('<div></div>');

this.$el.mousemove(elMousemove);

$('body').append(this.$tooltip);
}

If we were to use the this object in the elMousemove() function, we would actually be

referring to the $el element instead of the actual plugin this object.

$.proxy()

If you dislike having to declare _this = this all over the place, there is a workaround using

jQuery Plugin Development In 30 Minutes

13

jQuery’s $.proxy() function. Essentially, it does the same thing — passing any object you

like as the this for your function.

_generate: function () {
function elMousemove (e) {

this.$tooltip.css({left: e.pageX, top: e.pageY});
}

this.$tooltip = $('<div></div>');

this.$el.mousemove($.proxy(elMousemove, this));

$('body').append(this.$tooltip);
}

We could even pass in this.$tooltip all together if we liked.

this.$el.mousemove($.proxy(elMousemove, this.$tooltip));

Whichever approach you decide to take, make sure you are consistent. Otherwise, it can lead

to a lot of confusion.

I personally recommend setting var _this = this. It’s not expensive, as it’s just a

reference to the object and probably will result in less code than using multiple $.proxy

statements everywhere. However, it is available should you need it.

Summary

We almost have a working plugin and have covered how to keep your plugin code consistent.

This sets the groundwork for starting to fully build out our plugins.

